i{lﬁqitesimal time interval round ¢ = 0, and by noting that only the delta function is
significant, we readily find that

X(4,xp) dx

I =% (9.4.6)
so that
af(/i, Xo) _ N i
~ar - ). 9.4.7)

The system evolves to time ¢ with the equation (9.4.3); the mean of x(A t) given the
initial condition xy before t = 0 is ,

(x4, 0) [ [x0, 01) = [ dx xP(x,t| X(A, x0), 0), (9.4.8)

and using (9.4.7), the response function is obtained by the A = 0 value of

9 d
J dxoPs(x0) 5= (x(4,0) | [x0, 00) = [ dxo [f dx—=P(x,t] (A, xp), 0>] Py(x0) (9.4.9)

L]

= [ dxoP,(x) [ dx b(%(A, 0)) L%P(x, 1%, 0)]
=%(1,0)

(9.4.10)
and setting A — 0,
3 ]
=~ [dxo [ dx xP(x, t|x0,0)(-970b(xo)Ps(Xo) , 9.4.11)
so that
I(t) = (x(t)Lp(xp)), (9.4.12)
= (x(DEO)/Dy (¢ >0), 9.4.13)

from the result (9.4.2). The result (9.4.12) depends on the definition (9.4.5) of the
1mpulse response function with the noise term present. In the case of a linear system
(i.e., one with linear a(x) and constant b(x)), the impulse response function in the
prgsgnce of noise is the same as that in the absence of noise, but it is quite clear that
this is otherwise not the case. The response of the equation & = a(x) to an additional
Ab(x)é(t) is obviously a quite complicated function.

10. Lévy Processes and Financial
Applications

Outside the microscopic world exemplified by physics, chemistry and similar sci-
ences, there is a range of phenomena whose behaviour it seems reasonable to de-
scribe by stochastic processes using similar tools, such as stochastic differential
equations and master equations. In fact the very first formulation of the mathematics
behind the theory of Brownian motion was that of Bachelier [10.1], who is therefore
the originator of the idea that human behaviour could possibly be modelled as having
an underlying dynamics described in terms of stochastic processes. Bachelier’s for-
mulations were based on rather limited data, and did not claim to be anything other
than a basic conceptual description of the stock market. In re-introducing Bache-
lier’s ideas to finance, but modified to use geometric or (to use Samuelson’s termi-
nology) economic Brownian motion, Samuelson [10.2] acknowledged the priority of
several others in publishing the idea, and possibly even of conceiving it. The work
of Osborne [10.3] very nicely demonstrated that the behaviour of observed stock
prices was very much better described by geometric Brownian motion than by sim-
ple Brownian motion, and he later [10.4] gave a history of the idea, which he traced
as far back in time as 1738 to a paper of Daniel Bernoulli {10.5, 10.6], who is indeed
the true founder of the theory of relative value.

10.1 Stochastic Description of Stock Prices

As noted in Sect. 1.3.1, a model based on geometric Brownian motion has been
found empirically to be a convenient description of the fluctuating values of stocks,
or of the prices of any commodity such as wheat,coffee or cotton which traded on
a regular basis in a market situation. In this case, if the value of one item of stock
as traded on the stock market is S (¢), then the appropriate equation for the time
dependence of this value is written as the stochastic differential equation

dS(t) = u(®)S () dt + o(t)S () dAW(r) . (10.1.1)

Here the parameter u(z) is conventionally referred to as the drift, and the parameter
o(t) is called the volatility.
The solution for the stock price is easily obtained using Ito calculus, and is

S(t) = exp { f (un - Lo@y?) dt+ fa(t) dW(t)} . (10.1.2)
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Fig. 10.1. Stock returns, showing Brownian-like behaviour as well as large jumps.

In the simplest case, we take the drift and volatility to be constant, and the solution
shows that the log S (¢) has a Gaussian distribution. The information is most com-
monly expressed in terms of the return over a specific period T (very often one day
although with electronic markets the relevant period can be very much less) ’

R(t,7) = logS(t+ 1) — log S (¢), (10.1.3)
L AS®) _Se+n) -5
S = ) (10.1.4)

. However, the data for stock prices and similar prices when collected more exten-
sively and analysed carefully showed that this simple picture, which implies that the
returns are Gaussian, cannot be exact, or even realistic. The famous paper of Mandel-
brot [10.7] showed that the probability distribution of cotton price returns was very
poorly described by Gaussian models. The tails of the observed distribution tended
to zero very slowly for large deviations from the mean—certainly much more slowly
than the rapidly dropping exp(—x?/20) of the Gaussian. Such distributions are now
known as heavy tailed distributions. Since the only continuous Markov stochastic
processes are Gaussian, this also necessarily means that jumps are an essential fea-
ture of financial markets.

Mal}delbrot suggested that such behaviour could be described by a class of non-
Gaussian probability laws, which he called stable Paretian, which were first intro-
duced by in 1922 by Lévy. These processes are treated in some detail in Sect. 10.3
and are illustrated in Fig. 10.5-Fig. 10.7. For Paretian processes it is quite possible tc;
have distributions for a variable x which look very similar to the Gaussian for mod-
er_e‘llte fluctuations, but which fall off slowly, according to a power law of the form
X7, fgr -2 < @ < 0, as opposed to the very rapid exp(—x?/20%) behaviour of the
G?lussmn. Other models can give a behaviour like exp(—k|x]), which is also consistent
with the existence of jumps.

The heavy tails are necessary to describe a feature of all markets, that the returns
do not f:hange continuously, as required by any Brownian motion description, but
are a mixture of apparently continuous motion and not infrequent large jumps. There
does not yet seem to be any agreement currently on the “correct” model of financial
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markets; however, there is a body of well established information on their behaviour
known as stylised facts, which is summarised in Sect. 10.5.1. In the short term a
Brownian description can work, since in practice large jumps are not frequent. Al-
though they do appear to be more realistic, descriptions in terms of Lévy processes
do not seem to correspond exactly with reality; neither do they provide the relatively
simple analytic tools which can be derived out of the Brownian models.

10.2 The Brownian Motion Description of Financial Markets

The description in terms Brownian motion is equivalent to the use of the stochastic
differential equations of Chap. 4, and is s0 attractive, so fruitful, and so profitable—
in spite of its manifest defects—that we will start our exposition by describing the
techniques it provides and the results it produces, before moving on to the issue of
more realistic descriptions.

10.2.1 Financial Assets

In financial markets, we can distinguish three broad classes of asset, as follows:

i) Bonds : These are essentially cash in the bank, and earn interest at an appropriate
rate r. For simplicity, it is assumed that all bonds earn the same rate of interest.
Thus, if the value of a bond at time ¢ is B(t), then this obeys the differential

equation
dB(t) = rB(t)dt. (10.2.1)

ii) Stocks : These are securities which are traded on the stock market, and have a
value which fluctuates with time depending on market conditions. If the value of
one item of stock as traded on the stock market is S (t), then the appropriate equa-
tion for the time dependence of this value is written as the stochastic differential

equation
ds(t) = u(®)S (O dt + (S () dW (). (10.2.2)

Here the parameter u(t) is conventionally referred to as the drift, and the param-
eter o(¢) is called the volatility.

iii) Derivatives : The general concept of a derivative security is a right or an obliga-
tion to effect a sale or purchase of some other security, as discussed in Sect. 1.3.2.
In particular, we will be considering the most relevant derivatives for the stock
market, namely options, which convey the right to purchase (a “call” option) or
sell (a “put” option) a certain amount of stock at a definite price K (the “strike”
price) at some future time T'.
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10.2.2 “Long” and “Short” Positions

In ﬁnance. one can either possess a quantity of certain assets, or acquire a debt of
va]ue'equlvalent to a certain quantity of assets. The latter i; done by selling the
quantity of assets without actually possessing any to sell, but with a view to acqu%rin
the assets in time to deliver them when required. This became known as “sellin thg
assets ‘short”, a'md is conventionally known as taking a short position on the .assergThe
Opposite, owning a quantity of assets, is then referred to as taking a long positio'n on
the asset. A variant terminology is to say assets are held long or held short as the
case may be.

This means that in finance, we can reasonably consider both positive and negative
quantities of assets.

10.2.3 Perfect Liquidity

The assumption of perfect liquidity is often made in finance, and by this it is meant
that one can acquire any amount positive or negative of any asset, and that assets
pf all_ klpds can always be freely traded in the market place. This is obviously an
idealisation, but the behaviour of such ideal systems yields valuable insights, in much
the same way as the ideal gas or ideal frictionless motion are valuable co;ncepts in
physics and chemistry, which yield very powerful theoretical structures.

10.2.4 The Black-Scholes Formula

The fundamental question when buying an option is what price to pay for it. Within
the geometric Brownian motion description of the stock market, there is a precise
answer, developed by Black and Scholes [10.8] and re-derived by Merton [10.9]
The argument is most simply presented as follows. o
a) The Value of the Option: We suppose that an option to buy one unit of stock has
well defined value F (S(),1), which depends only on the current value of the stock
and nqt on its history. It is this function that we want to determine. Ito’s formula say;
that this value will change with time according to the stochastic differential equation

_OF(S(t),0) AF(S(1),1) PF(S
AF(S ()0 < FE®,0 9F(S®),1) ®,1)
(S@),1 o At dS() + %—asz—dsmz,
(10.2.3)
AF(S (1), 1) OF(S 2
= { — ) +u®S () —L 6(;) L) +10(®)?S (1) FF(S®.0) F(; (,t)’ t))} dt
2
AF(S (1), 1)
+0()S (:)T aw(s). (10.2.4)

The option is seen to have a fluctuating term proportional to dW(t), the noise source

in the stock market. Is it possible to construct a portfolio of stocks, options and bonds
so that all the fluctuations cancel?
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Let us consider taking a short position on one option, that is, one acquires a debt
of size F(S(r),t). This is balanced with a quantity A(r) of stock, which is an asset,
not a debt. We want to choose A(t) so that the fluctuation in the stock (held long)

exactly balances the fluctuation in the option (held short).
b) The Portfolio: To put this all into practice, it is necessary to consider a portfolio
consisting of;

i) The option (held short) : of value -F(S@),1),
ii) The amount A(t) of stock (held long) : of value AD)S (1),
iii) A quantity B(t) of bonds stock (held long) : of value B)B(t).

The total value of the portfolio is
P(t) = = F(S(),1) + A@®)S () + B@)B(), (10.2.5)

and the equation for the change of this as a function of time is the stochastic differ-
ential equation

dP(t) = - {3F(L;§t), ) dt + 6F(SL;(;)’ 1) as@) + % Qf(jg—)’t» ds (t)Z}
+ad{ABS ) +BOB®)} - (10.2.6)

¢) The Self-Financing Condition: We want to try and vary the quantity of stock
by trading bonds for stock, so that the change in the value, A(t)S () + B(t)B(t), of
stocks and bonds arises only from the changes in values of the stocks and bonds
themselves, not by any net inflow or outflow of capital. In the presence of white
noise fluctuations, this requires some careful specification. To do this, let us use a
discretised description of the time development of the portfolio of the kind

S(f)—)S,l, S(t)+dS(t)—)S/1+l,
B(t) — B, B(t) + dB(t) = By, (102.7)
A(t) - An > A(t) + dA(t) - An+l )
ﬁ(t) s ﬂn s B(t) + dﬂ(t) _)Bn+l .

This means that when we advance from time # to time n + 1, we rebalance the port-
folio by changing the quantity of stocks by A,+; — A, and the quantity of bonds by
B+t — Ba. The total change in value as a result of this rebalancing is given by

Zyons1 = (An+1 e An)SnH + (ﬂn«l—l _ﬂn) B . (1028)

The stock and bond values are those for the time step » + 1, since the changed values
of A and B apply at time n + 1.

The self financing condition requires this change in value to be zero, reflecting the
fact that we can only purchase shares by exchanging them for an appropriate amount
of bonds. Expressing (10.2.8) in differentials, we get the condition

{s@® +ds®} daw + {Ba) + dB(1)} dB(r) = 0. (10.2.9)
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This condition can now be substituted into the second line of (10.2.6), which leads
to the form

d{A(t)S(t) +BOB®)] = A)dS (1) + B(r) dB(r). (10.2.10)

In fact the term dB(r) dB(t) in (10.2.9) is zero, since by (10.2.1), dB(t) has no noise
term—thus Ito rules will require any such term to vanish. The resulting condition is

() = - (S () +dS (1)) %%, (10.2.11)

amounts to a stochastic differential equation for 3(¢), which fixes B(t)if S(z), B(t) and
A(t) are known.

d) The No Arbitrage Condition: If we now use the self-financing condition in the
form (10.2.10), and make the choice

A@) = ‘917(5%)_) ) (10.2.12)

the equation for P(¢) becomes

2
dP(t) = —{% + Lo(r)2S ()2 %jf”» - r,B(t)B(t)} dt.  (10.2.13)

Here we have used the stochastic differential equations (10.2.1, 10.2.2), and Tto rules.

By making this particular choice for A(t), we are left with a time development
equation with no noise term. Thus, in the short term this does not fluctuate. Since
the self-financing condition means that we are not putting any new investment into
it either, we deduce that P(¢) behaves like a bond, which is an investment to which
no further investment is being added, and whose rate of change is given by a simple

differential equation. This equation therefore must be equivalent to the equation of
the bond, i.e., to the equation

dP(t) = rP(t)dt. (10.2.14)

If this were not so, arbitrage could occur, in which bonds could be borrowed at the
rate r and invested in the portfolio, thus making a risk free gain (or loss, depending
on which is more profitable.) Putting together these three equations, (10.2.5, 10.2.13,
10.2.14), we deduce the Black-Scholes equation

OF(s,t OF (s,
(g: ) =rF(s,t) - rs—% - %0‘(1‘)25‘2

8*F(s,1)
3 )

Os?

(10.2.15)

10.2.5 Explicit Solution for the Option Price

An explicit solution for F (S, 1) was given by Black and Scholes for the case where
the volatility o() has the constant value . We will show how to get their solution
using stochastic methods.
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The equation (10.2.15) for the option price is very similar to a backwar.d Fqkker-
Planck equation, so let us define a conditional probability P(x, T |s,t) \fvhxch, in thei‘
case of constant volatility, satisfies the backward Fokker-Planck equation and fina

condition

C aP(— \TIS,t) 2 262P(-\7,T|S‘,r)
am’ails‘ 2= s T it (10.2.16)

P(x,T|s,T) =d6(x~5).
Then the solution of the (10.2.15) can be written as

F(s,t) = &7 fdx P(x,T|s.,t) F(x,T). (10.2.17)
The stochastic differential equation corresponding to the backward Fokker-Planck
equation (10.2.16) is

dx(t) = x(®)[rdt + cdW()], (10.2.18)

and this can be solved in the same way as that given for geometric Broyvman motfon
in Sect. 4.5.2. We define y = log x, and using Ito calculus find the equation of motion

for y is

dy = (r- o?) dr+ o dw(), (10.2.19)
whose solution at time 7 is

y() = y(t) +[r - 10?|(@-1)+ o W@ - W) (10.2.29)
The corresponding conditional probability for the variable y(z) to have the value 7 is
then

1 [p-y-(r— 4o} o] _ (10.2.21)
PGTIN) = s SXP Y~ 2(t - o’

Then from (10.2.17)
F(s,t) = €T [dg p@. T |y, OF (¢, T) . (10.2.22)

a) The Final Condition: The value of the option at time 7 will depend on Yvhether
the strike price K is greater than or less than the value x of the stock at tha;1 time. -

If K > x, the option has no value, since it is cheaper to buy the stock on the mljr be
than to exercise the option. If K < x, the value is {c— K, the profit one could make );
buying the stock at the strike price K and selling it on the open market at the curren
value x. Thus

0, x<K,

x—K, x>K.

1293
I { (10.2.23)

; _ M.
b) The Option Pricing Formula: For convenience define a quantity M by K = e™;
then the formula (10.2.22) becomes

F(s,1) = €D [ dg (& — M) p@. T 14.1). (10.2.24)
M
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Using the Gaussian nature of the result (10.2.21), this integral can be evaluated in
terms of the cumulative Gaussian function

N@) = _{i exp(-12) dx, (10.2.25)
as
F(s,0) = sN(dy) — K" ) N(dy), (10.2.26)
0 - log(s/K) +(r + $0?) (T - 1)
s , (10.2.27)
o o losrK) +(r-3?) @ -9
T : (10.2.28)

This is the celebrated Black-Scholes option pricing formula.

10.2.6 Analysis of the Formula

The opt'ion value formula is plotted in Fig. 10.2 as a function of T and s for rep-
resen}gtwe values of the parameters. The behaviour is a rather unsurprising smooth
transition from the final condition at T = 0, to the value being equal to that of the
stock'wh.en T is very large. The merit of the formula is not its appearance, but its
quantitative behaviour. ’

I.n Flg: 10.3 two scenarios are plotted for the evolution of the Black-Scholes port-
folio P given by (10.2.5). It should be borne in mind that the portfolio formula is used
only to prove the Black-Scholes formula, and is not a realistic or sensible investment
choice. The first scenario shows the stock price rising quite rapidly, exceeding the
current interest rate r, and the option price increasing more rapidly than that. To
keep the growth of the portfolio at r, the investor increases the amount of stock i)ur-
chased, until at the time when the option price reaches it maximal value s — K, we
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Fig. 10.3. Two scenarios for the evolution of the Black-Scholes portfolio and its components;
The initial conditions are the same for both, with s(0) = 1, B(0) = 1,8(0) = 10, K = 2,0 =
0.15, r = 0.0862, u = 0.1823—the only difference is the particular realisation of Brownian
motion. (However, note that the vertical axis scales differ.)

Left: A relatively large rise in stock price over the time period leads to A(s) — 1 before the
end of the time period, and a portfolio with one unit of stock for each unit of options held
short;

Right: A poor performance of the stock leads to the value of the option becoming zero, and the
portfolio consists of a valueless option and no stocks, and thus with all assets held in bonds.
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find A(s) = 8F/3s — 1, and the portfolio now contains one unit of stock, one option
(held short) and a fixed amount B(s) of bonds. ,

.T.he other scenario shows a stock price growing slowly, and the option reaches its
mupmum value of zero, leading to A(s) — 0. The portfolio then contains a worthless
option and no stock—everything of value is held as bonds.

In both cases the portfolio total is exactly the same and follows the current interest
Fate. Even when the stock is growing strongly, the apparently perverse idea of tﬁe
mvesFor to hold a short quantity of options manages to cancel out any of the profit
he might have enjoyed from the stock growth. This happens even if y is rather large
and o quite small, so that a high return on the stock is almost inevitable!

10.2.7 The Risk-Neutral Formulation

The B}ack-Scholes formula does not contain the drift 1 explicitly, and this is one of
its major features. Of course it does contain the drift implicitly, since this determines
the current value of the stock, the variable s in the formula. |

To 'show‘ that there is indeed an issue to be considered, we can solve (10.2.2) (the
equation giving the value of the stock) assuming both x4 and o are constants using
the method of the previous section, to find that the stock price at time T is ’

S(T) = S(e)exp([u- 4 [T -1+ o wir) - w))) . (10.2.29)
The mean value of the stock at time T given the value is s at time ¢ is
(S(T)|s,t) = sexp[u(T - 1)]. (10.2.30)

Using tt}is solutign, (10.2.29), the value of the option at time 7', given the stock price
S(z) at time ¢, might be taken as the mean of the function

0, S(T)<K,
H(S(T)) = ot (10.2.31)
S(T)-K, S(T)>K, o
and this is, in the same way as we derived (10.2.24),
(HS(T)|s,1) = A{dg (7 - ") @, Ty, 1), (10.2.32)
= I{dS S -K) P,(S,T]|s,1). (10.2.33)

Here, the subscript 4 means that the probability densities are to be calculated using
M, not r as in the derivation of the Black-Scholes formula.

If T wish to sell my option at time ¢, the price I could reasonably demand is
(H(S (T))]s,1), discounted appropriately by the interest rate factor "7, or pos-
sibly by e**-T)_put in neither case do I arrive at the same value F (s, 1) ’as given
by (10.2.24), unless 1 = r. How shall we compare the two estimates of value? The
Black-Scholes argument is compelling, and gives a definite value, with no fluctua-
tion. The value given by this argument is only a mean value—it is therefore risky, in
the same way as the estimate of the value of the stock in the future is risky. ,
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The Black-Scholes result can be derived by using this methodology, after imposing
a risk-neutral behaviour on the owner of the option. This behaviour is characterised
by the investor’s decision to take no account of any information on individual growth
rates (determined in this case by x) and his attribution of only the current risk-free
interest rate r o all estimates of value; thus the risk-neutral investor will calculate
values by assuming the stock behaviour is given by the equation

S(T) = S(yexp([r- %0'2] (T -0+ [W(T)- W), (10.2.34)

thus suppressing all knowledge of u by replacing it everywhere with r, but at the
same time continuing to accept the volatility value o In that case, the risk neutral
valuation of the option is identical to the Black-Scholes valuation.

10.2.8 Change of Measure and Girsanov’s Theorem

The argument that leads to the risk neutral formulation requires no construction of a
risk-free portfolio, but yields exactly the same answer—possibly it is better viewed
as a rationalisation for the correctness of the Black-Scholes formula than a deriva-
tion. The risk neutral valuation argument is in fact more widely applicable than the
original Black-Black-Scholes argument, since we do not require anything more than
a conditional probability for the stock price at time T given its price at time t—thus
the evolution of the stock price can be given by any Markov process, allowing for
a much wider range of stock return models than geometric Brownian motion. How-

ever:

i) The correct way to replace the drift i by the interest rate » becomes one of the
main tasks in applying models;

ii) In non-Brownian models the Black-Scholes argument is no longer available to
provide a solid rationale for the procedure.

a) Equivalent Probability Measures: The central issue is to ask under what condi-
tions is it possible to have different views on the correct stochastic differential equa-
tion for the stock price, and the response to those who raise this issue is to introduce
the idea of equivalent probability measures into the theory of stochastic differential
equations. In probability theory, two probability measures P and Q are said to be
equivalent if for any set A in the probability space

P(A) >0 Q(A) > 0. (10.2.35)

This means that all events which are possible under the measure P are possible under
the measure Q. If we suppose that the equivalence (10.2.35) is not true—for example
for some set X it may be found that P(X) = 0 while Q(X) > 0 —then according to
the measure P the event X is impossible, while according to the measure Q the event
is possible. The two measures are then inequivalent—the worlds they describe are
different.

b) Application to Stochastic Differential Equations: We can show that two
stochastic differential equations can be considered equivalent if their noise terms
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he same even if their drift terms are different. Let us show this with a simple ex

ample. Suppose a proces; ic di i
e process x(r) has the stochastic differenia] equation on the interval
dx(t) = f(t)dr + dW(r).
In a discretised form this is 19230
Ax; = fiAy; + AW, (10
‘ 2.37)
The measure used for this equation is the Wiener measure
,. 1 AW?
PW) =11 exp|-—=—
v p 2 | (10.2.38)
If we define
AVi = AW, + f; At;, (10.2.39
then the measure on V is i
2(V) =1 exp _\(AV,- = i At)?
! 2rar 271, ; (10.2.40)
= exp(;{fi AV, - 1 f? At,»}), (10.2.41)
T
=ex t — 112
p (Of {foave) - Lfe dr]) 2WV). (10.2.42)

Since the factor multiplying (V) is always positive, we can conclude that 2(V)

d 2(V) are equivalent; that is, an
( o S, set of s ich i i
P(V) is possible under 2(V) and coﬁversely.gample ek R

The stochastic differential equation (10.2.36) can be written
dx(t) = dV(). (10.2.43
.2.43)

If we assign the measure P (V) to V(t) then x(t) is the Wiener process, whe,

assign the measure 2(V) to V(z), this sa reas if we

ys that x(¢) follows the stochastic differential

¢) Girsanov’s Theorem: More generally.
that the stochastic differential equations

dx(t) = a(t)dt + b(t)dW(r),

the same procedure can be used to show

ayt) = f(0)dt+ g(t) dW(r), e
are equivalent if b(t) = g(r). ——

This result is Girsanov’s theorem. It means that we can write

ay(®) = a(t)dr + b(r) av(), (10.2.46)

where the measure for

- V is given in terms of the Wiener measure ( 10.2.38) in the
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Fig. 10.4. Plots of simulations of the stochastic differential equation dx = adt + bdW(1) for:
a)a=0b=05b)a=0.10>b=05c)a=0,b =10 Whilea) and b) look qualitatively
indistinguishable, the more intense noise in c) is immediately evident.

T
2(V) = exp (f {¢(t)dV(t) - %qﬁ(t)z dt]) P V), (10.2.47)
0
and where
_ f(H) ~a()
@) = e (10.2.48)

When b(t) # ¢(t), the procedure breaks down, and in fact it can be shown that in
this case the processes are never equivalent [10.10, 10.11]. An illustration of what
this means intuitively is given in Fig. 10.4. The two plots on the left are simulations
of stochastic differential equations with different drifts, but the same noise, and it is
quite credible that either could be a simulation of the other equation. On the other
hand, the right hand plot is a simulation of a process with the same drift as the left
hand plot, but with a different noise coefficient, and the increased noise intensity is a
very obvious characteristic.

d) Financial Interpretation: Girsanov’s theorem is now the justification for use
of the drift rate r instead of u in the valuation of options using the risk-neutral pro-
cedure. The noise term is identical for both cases, and in this case we can say that
the two processes can be seen as arising from the choice of a different probability
measure to the same set of sample paths. In some sense it can be shown that this is
a rigorously justifiable procedure [10.11], although not everyone would accept that.
However, the use of change of measure is now an accepted part of the procedure for
valuing options and other derivatives when one goes beyond the simple geometric
Brownian motion picture.

e) Conditional Probabilities and Change of Measure: An alternative way of view-
ing the change of measure is to note that the conditional probabilities for the pro-
cesses (10.2.29, 10.2.23) are



I (Y~ y—(u = Lo2yr — oV
YTy, 1) = - 70°1( t))
g \/me’(p[ W , (10.2.49)
! (Y ~y-r = to2y7 - )
PYTIYt) = —— x| 20°XT - 1))
ZoT—n T R (10250
with
Y: IOgS ) =l S.
AL (10.2.51)
The two probability densities can be related by the formula
. -] ety
PET ]y = M le ™ p (4T 1y, ), (10.2.52)
g X uy-y)
with . :;Le < pu(Y.T|y,0)ay, (10.2.53)

7572 (10.2.54)

The two df:ns{ties are related by a positive factor with no zeroes, and an appropri-

;[;. n(?rrnallsatlon, and are therefore equivalent probability densities, as noted above
his is of course exactly the same measure change as would be obtained using the

Girsanov theorem procedure of b) and c) above. ¢

. This particular methodo!ogy is one which can be generalised to a variety of situa-

tions, and one which we wil] develop more fully in Sect. 10.5.4.

10.3 Heavy Tails and Lévy Processes

overtake_n by tl?e Back-Scholes description, which on the other hand does re]

g Gaussian white-noise stochastic differential equation. Mandelbrot was the zrgtn

0;):::;;} Ct(:1 ztte(r;lpt a serious and e?(plicit description of financial markets in terrns,

ter e n- : aussian quels. HIS: and many other models can be formulated in
ms of Lévy Processes, which we will now proceed to formulate and apply.

10.3.1 Lévy Processes

iI;]éviil processes arise from the differential Chapman-Kolmogorov equation by requir-
W%enee process be hon?ogeneous in time and in the probability space variables, The
T process has this property, but there is a more extensive class of such pro-

cesses, which can all be descri .
ri .
equation. bed by a master €quation or by a limit of a master
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In one dimension, the kind of process we want to study can be described by a
differential Chapman-Kolmogorov equation in which the parameters of (3.4.22) take

the form
Ax,t) > a, (10.3.1)
B(x,t) — Lo’ (10.3.2)
(10.3.3)

WElx,t) = wiz—x).
In this case the differential Chapman-Kolmogorov equation takes the form
0ip(z,t) = —ad.p(z,t) + %azafl)(z, t)+Fduwu){piz—ut) - pz,1}, (10.3.4)

where p(z,t) is shorthand for p(z|y, 1).
If we write p(z, t) in terms of the characteristic function thus

¢(s,1) = [dze* p(z,1), (10.3.5)
we can rewrite (10.3.4) as
B,9(s, 1) = (ias - 30?5 + f du (™ - 1) w(u))¢(s, 0. (10.3.6)

Therefore the characteristic function of a Lévy process which starts at position z = 0
can be written as

o(s,1) = }odz ei“p(zIO, t) = exp {(ias - %o-zs2 + ;E du (e"“ - l)w(u)) t} .
(10.3.7)

10.3.2 Infinite Divisibility

The property of infinite divisibility arises in probability theory—a probability density
p(x) is infinitely divisible if the random variable X whose distribution is p(x) is such
that for every positive integer n there exist n independent identically distributed ran-
dom variables X;, Xa, . .., X,, whose sum has the probability density p(x). The prob-
ability distribution of the X; is in general different from p(x). Not every probability
density is infinitely divisible, and the proof that any particular probability density is
infinitely divisible is not straightforward.

Lévy processes have the property of infinite divisibility, which is automatic from
their definition in terms of homogeneous Markov processes. In a homogeneous
Markov process with conditional probability p(x’,t + 7| x,t) = p(x',7|x,0), this
property is a direct consequence of the Chapman-Kolmogorov equation, and con-
versely. Thus, the representation in the form (10.3.7)—or more accurately, the more
refined version of (10.3.24)—is valid for any infinitely divisible probability density.

If the characteristic function of an infinitely divisible distribution P(x) is known to
be @(s), we can define the characteristic function @(s, t) of a conditional probability
in terms of some specific time scale 7 (usually taken to be 1) by
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@(s,1) = (D(s))'/7 .

correct Riemann sheet if g( $) is not real and positive—see [10 12]

10.3.3 The Poisson Process

The simplest Lévy process is the Poisson process, described by ¢ =
wu) =déu-1).

o =0, and
(10.3.9)

Thls characteristic function is that of the Poisson process N(), given in (3.8 49), that

18

(exp (isN()) = exp (e - 1) (10.3.10)

he C()mpei’lsa ed P()IS‘S‘OI’Z process N y
I 1 DR ces t) 18 Obta ne b Sub[[ aCtlll t € mea Value

The characteristic function of the compensated Poisson process is
(exp (isN@®)) = exp (e -1 - is]) . (10.3.12)

In the description of shot noise in Sect. 1.5.1, the differential noise te,

(1.5.19) is the differential of a compensated Poisson process. The co Ay

10.3.4 The Compound Poisson Process

More generally, the com ]
€ | ; pound Poisson processis obtaine, i =
fequiring a normalisable w(x), i.e., such that i e =l

Jwwdu=1<oo.
J (10.3.13)

) ’

scribed are given by a s j
r ! equence of jumps U, occurring at time i i
€Xponentially distributed and have the prob;bility dengsity SR

Prob(t <1, <t + dt) = exp(—At) dt, (10.3.14)

We i i i
takecsza:nu:}tlzos:lce a Poisson process variable (as described in Sect. 3.5.1) N(r), which
ues » at the time ¢,. The jumps U, have a probability density ,

Prob(u < Ui <u+du) = Mdu.
y (10.3.15)
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The position Z(z) after a time ¢ can then be written

N
Z(t) = XUy, (10.3.16)
n
where N is that integer such that

ty <t < tysy- (10.3.17)

10.3.5 Lévy Processes with Infinite Intensity

a) The Meaning of Infinite Intensity: If w(u) — oo as u — 0, intuitively this cor-
responds to a process with jumps of an infinitesimal size occurring at an infinite rate
in such a way that the net result is a well-defined limiting process. In this limit, the
concept of a jump process becomes very similar to that of a diffusion process. The
precise formulation of this concept was first made by Lévy [10.13]. In our formula-
tion, the characterisation of the resulting process depends on the particular behaviour
of w(u) at u = 0.

b) The Definition of the Principal Value Integral: The principal value integral in
(10.3.7) can be defined so as to admit its existence when w(u) is quite singular near
u = 0, in fact it can be defined when

w(u) ~ |u[~*"" as |u] = 0, provided @ < 2. o 0

When @ < 1, the process has a finite intensity, and there is no need for a principal

value integral, since e — | ~ isunearu=0.
However for 1 < @ < 2, the intensity is infinite, and a rather unusual specification

of the principal value integral has to be made as follows.

i) Let us assume that w(i) is asymmetric, in such a way that near u = 0

Alu 1, u<0,
w(i) = (10.3.19)
Bu— !, u>0.
Then we can define the principal value integral as
isu G is wd i 1
_ =1i isu _ 1 su ,
F duw(u) (e 1) 15%{_{0 duw(u) (e )+€f u w(u) (e )}

(10.3.20)

where the function d(e) is defined by
Ad(e) ! = B! 4 k. (10.3.21)

(Here we exclude the case @ = 1, which is treated in Sect. 10.4b.) Using this
prescription, for any value of «, the divergence at the upper limit of the first
integral cancels that in the lower limit of the second integral provided & < 2.
The arbitrary constant « is an expression of the ambiguity in definition of
the principal value integral, which is not that which appears in the derivation
of the Chapman-Kolmogorov equation given in Sect. 3.4. The symmetric defini-
tion given there arises from the imposition of the conditions i) to ii), which are
more restrictive than absolutely necessary for a well-defined stochastic process.
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i) If @> 2, then using a higher order expansion e's*
arising from second term is divergent, and since
cannot be evaded by any choice of § or €.

iii) I? fa:ct it is clear that for any reasonable behaviour of w(u) near u = ided
IS u*Lf)(u) du exists for positive €, §, we can choose a 6(¢) such that—th , Pr'OVl' "
value integral (10.3.21) is defined. s

iv) Looking back at the differenti
(10.3.4), it is clear that this ch
is also that required to ensure it

~ I ~isu— 15’ the integral
the integrand is positive, this

a.l Chapman—Kolmogorov €quation in the form
oice of definition of the principal value integral
§ convergence in that equation too.

10.3.6 The Lévy-Khinchin Formula

The Lévy-Khinchin formula evades this rather precise definition of the

value integral by noting that we can say principal
3‘15 Jui e :
s uisuw(u) = 11_1"%{ ‘j]' duisuw(u) + Ffdu isu w(u)} , (10.3.22)
=iA, s
ek (10.3.23)

where A; can be evaluated in an

' Y particular case, including if nece
constant «. This enables the cha; - et

racteristic function to be rewritten as

#(s,1)  =exp {(ia's - _%(7'252 + [ du (e““ =1 —isuy(ul < l)) w(u)) t} 3 —’

arbitrary

r o (10.3.24)
=a
= (10.3.25)
L,
x(ul < 1) = b < 1,
0, Ju>1. (10.3.26)

1) Both positive and negative jumps can occur;

ii) J i
) Jumps of magnitude |u] < 1 are represented by a compensated Poisson process.

10.4 The Paretian Processes

The particular chojce
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R (10.4.1)
Au—a/—l’ —o0o < U <O,
o = { ful (10.4.2)
Buv-rr—l , 0 <uc< o,
with
O<a<2, (10.4.3)

yields the class of Paretian processes. Specifying that the arbitrary constant of
(10.3.21) is given by « = 0, the characteristic function can be evaluated from (10.3.7)

as

#(s,1) = exp {|s|“tr(-a) ((A + B)cos % + %(A ~ B)sin %)} (10.4.4)
Choosing another value of « adds a term ixs in the exponential in (10.4.4), adding a
constant drift term. This is best regarded as arising from an appropriately modified
coefficient a in the term —ad.p(z,t) when the principal value integral definition is
chosen with k = (.

The characteristic function is then normally parametrised using the notation

Y = —=(A+ B)I'(~a)cos % (10.4.5)

_ :\‘_;g ] (10.4.6)
which gives the form

#(s,1) = exp {—Isl“ ty(l +iB I—j—l tan ’-’25‘5)} , (10.4.7)

= [due™ Par (@, B, yt; u). (10.4.8)

This is the characteristic function of Paretian process; the last equation is the defini-
tion of its conditional probability Par (a, B, vt; u).

a) The Wiener Process: Although the formula was derived for a < 2, setting & = 2
and y = % in the formula (10.4.7) yields the characteristic function of the Wiener
process.

b) The Cauchy Process: If we set @ — 1 in the original formula (10.4.4), we note
that

r-e) . (10.4.9)
r(—a)cos%’ N —’2-’, (10.4.10)
I‘(—a)sin”z—a =" Ios. (10.4.11)

i)If A = B, this yields the characteristic function of the Cauchj' process of
Sect. 3.3.1, namely

Gty = €Xp (= 721sl) (10.4.12)
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ii) If A # B, the condition (10.3 21 i inci
L fOrm( -21) required to define the principal value integral

Alog(6(e)) = Blog (€) + k. (10.4.13)

Here, « is i
ol i tzim adrb};rary com‘tant, for any value of which the principal value integral
ned. The resulting characteristic function takes the form )

s, )= gt is
s, 1) CXP{ 'S'Ir(zﬂ(A+B)+m[K+(A_B)(75ulcr+]Og,s|)])}’

(10.4.14
Yeuer =0.5772156649 ... is Euler’s constant. (104 15j
The notation to be used in this case is
= %zr(A + B), 104
. e (10.4.16)
iTE (10.4.17)

Ins . P e
tead of the choice «x = 0, in this case it is most convenient to standardise on

K = (B~ A)yguter , (10.4.18)
giving the standard notation for the characteristic function
&(s,1) = exp {—Isl (1 + I—S 2logls|
| ty ’Blsl = . (10.4.19)
= [due™ Parl (8, yt; u) (10.4.20)

;Ii‘(l)lllls is tt}llle (cj:h;:acteristic function of a Paretian process for a = 1 the last equa
1s the definition of its conditional ili ’ !
‘ probability Parl(B, yz; u). Th
portional to u is of the same form a i e origin, and doec ey
s a displacement from the origj
! n,a
turn up in the case of other Paretian processes. i

o) Di . .
a) I lzve;‘i‘::tm Momelrllts. llThe characteristic function is nonanalytic in s except for
=2 eans that all moments higher that the first dj i
| rst diverge if @ < 2. Th
moment only exists for | < o < 2 i e
loment , and is the i i
distribution is not symmetric. SEh i

For 0 < a < 1, even the first moment is divergent.

d) Th = +1:
il :; hCe':l]s:ig] e-r Aitr ;hve aic;ts‘x;ulae (10.4.7) and (10.4.19) give quite sensible results
. es, corresponding to 8 = +1. Ho i
cancellation process chosen with i £ (1021 v et
the arbitrary constant x of (10.3.21

o .3.21) set equal

= r((; (;1(3)678)[10; .work. The foqulae for these cases arise by choosing a 2irift te?'uma ictfv)
y Chos.e[.l T\E ich cancels with the corresponding term arising from any finite value of
- like.th us, although the characteristic function formula makes sense and looks

e case for || < 1, the underlying process is slightly different.

1U.4 1L0OE rafeudl FLoresses Z00

86 4-20 2 4 6 8

Fig. 10.5. Pareto stable distributions Par(a, 8, yt; x) as defined in (10.4.8); Left: for various «
and 8 = 0, yt = 1; Right: for various @ and 8 = 0.3,yt=1.

10.4.1 Shapes of the Paretian Distributions

a) The Stable Paretian Distributions: This is the case when a and B have any al-
lowable values with the exception of the case for which @ = 1 and 8 # 0 simultane-
ously. The distributions are plotted for various values of the parameters in Fig. 10.5.
As can be seen, even for @ = 1.5, the central features are very like the Gaussian form
visible for @ = 2, but the very much slower decay of the tail of the former is very
evident. On the right of the figure, the asymmetric cases with § = 0.3 and @ < 1
are qualitatively different from those with the same value of Band @ > 1—as « ap-
proaches 1 from above the peak moves further to the right, and eventually recedes to
infinity, reappearing from negative infinity when 6 becomes less than 1.

b) Shapes of Paretian Distributions for @ = 1: We plot the distributions for & = 1
in Fig. 10.6—these are not qualitatively very different from the distributions for @

near 1, and similar S.

0.3 Fig. 10.6. Shapes of Paretian distributions
=l Parl (8, yt; x) for B = 0 (solid line); 8 =
oD 0.5 (dashed line) and 8 = 1 (dotted line).
0.1
0
-10

10.4.2 The Events of a Paretian Process

To simulate a Paretian process one uses the algorithm described in Sect. 3.5.1a, but
since w(x) is given by (10.4.2), the simulation must be carried out by omitting an
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Fig. 10.7. Lévy process simulation:
a) Simulation of the Pareto pro-
cess Par(a,p,yt;u) as defined in
(10.4.8), with @ = 1.7, B8 = -0.1,
v = 88.3.

The simulation has heen performed
using € = 0.0l in the principal
value integrals in (10.3.20), and
this represents the minimum size
of step available to the simulation.
The simulation was performed for
500,000 jumps, leading to a total
time of 500 time units. The figure
plots the value of u at times which
are multiples of Ar = 0.5 time
units.

b) The jumps Au between succes-
sive values of u at times which are
multiples of A7 = 0.5 obtained from
the simulation in a).

¢) Simulation of the distribution of
Par(a, B, yAt; x) at time At = 0.5
obtained from the data of b).
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interval —§ < u < €, exactly as is necessary in calculating the characteristic function.
This means that jumps of very small sizes, down to the span of the interval occur
very rapidly, and if the interval is made smaller, the jumps occur more rapidly, and
are even smaller. The behaviour approaches that of the Wiener process as @ — 2
and as the omitted interval becomes smaller. The behaviour is illustrated in Fig. 10.7,
which also illustrates that occasional large jumps also occur.

The probability distribution of these jumps can be extracted from the simulation,
and is shown in Fig. 10.7, where the occasional large jumps are also evident.

10.4.3 Stable Processes

The Paretian processes are known as stable processes, because they possess a prop-
erty of stability, which is a generalisation of the property possessed by Gaussian
variables—that a linear combination of two Gaussian variables is also Gaussian.

a) Strictly Stable Processes: The case of @ = 1 and 8 # 0 is special; for all other
cases it is clear from the expressions (10.4.7, 10.4.8) that

Par (@, B, yt; Au) = Par (@, B, yt/A%;u). (10.4.21)

From this it follows that the distribution has a width which is proportional to (yf)'/@.
This, in the case of a Gaussian the width is proportional to 4/y7, in the case of a
Cauchy distribution, it is proportional to yz.

This generalises to arbitrary linear combinations; thus in the case of two variables
U,, U,, distributed according to the Pareto law, that is, such that

U, has the distribution Par (@, 8, yt;;u),
U, has the distribution Par (@, 8, yf; u),

(10.4.22)
(10.4.23)

the linear combination aU; + bU, has the distribution Par (e, B, y(a®t; + b*t); u).
Thus the shape of the distribution of the linear combination is the same as that of
the components, and the scale factor of the resultant is given by (yt)'/?, where

t = (a®H + b“tz) . (10.4.24)

This property expresses a kind of stability or invariance under addition which has
come to be referred to as strict stability, and distributions with this property are called
strictly stable distributions—the shape and location of the distribution is stable under
arbitrary scaling and linear combinations. In the case of Gaussians with variances o2
and o-% this means that the distribution of a linear combination is also Gaussian with
variance 0 = a0} + b0 2. It is only for the Gaussian case that the stability property
can be expressed in terms of the variances, since for all other cases the variance is
divergent. However, the concept of stability is of the preservation of the shape of
the resulting distribution, which, although its variance is infinite, nevertheless has a
definite width, given for example by the full width at half maximum.

b) The Special Case @ = 1, 8 # 0: The scaling law is different in this case from
that given by (10.4.21), and takes the form

Parl (8, yt; Au) = Parl (8, yt/A; u + 2yBlog A/x). (10.4.25)
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Thus the distribution changes to another of the same kind under scaling, but there
1s an additional displacement of the distribution as a whole. These distrit;utions are
therefore not strictly stable. The class of stable processes comprises strictl siable
processes, and those which also are shifted by scaling in this way. | ’

10.4.4 Other Lévy processes

Accorfiing Eo Sect. 10.3.2, any infinitely divisible distribution gives rise to a corre-
sponding Lévy process, and this has been used by [10.12, 10.14, 10.15]
a) The Generalised Inverse Gaussian Distribution: It can be shown that the den-

sity [10.16],
_ Nuly -
I = i PP (7 ) x>0, (10.4.26)

(where ¢ and y are positive parameters) is infinitely divisible.
b) The Hyperbolic Distribution: This infinitely divisible distribution is given by

Z_m
hyp(x) = il N
yp(x) T (6 = —;62) exp (—a 6%+ (x— p)? + B(x - /.t)) ' (10.4.27)

This can be related to the inverse Gaussian [10.16].

¢) The Related Lévy Processes: These distributions are not stable distributions in
any sense, and therefpre the relationship to the relevant Lévy process is not direct
ar!d m‘ust‘ proceed as in Sect. 10.3.2. The related Lévy processes have been applieci
with significant success to financial markets, as will be seen in Sect. 10.5.5.

10.5 Modelling the Empirical Behaviour of Financial Markets

;Fhe correct™ stochastic description of financial markets has been under discussion
o:) over‘ 40 years, and has not reached a definitive resolution. However, there is a
substantial amount of well classified empirical data common to a wide set of financial

assets. This has been carefully collated and analysed b
' R
which he lists as the following. 4 i Sl e L

10.5.1 Stylised Statistical Facts on Asset Returns

L. zflb.fen.ce of autocorrelations : (Linear) autocorrelations of asset returns are often

mggmﬁcant, except for very small intraday time scales (~ 20 minutes) for which
microstructure effects come into play.

2. Heavy tails - The (unconditional) distribution of returns seems to display a
power-law or Pareto-like tail, with a tail index which is finite, higher than two
and less than five for most data sets studied. In particular this excludes stable

laws w1tb ir}ﬁni'te variance and the normal distribution. However the precise form
of the tails is difficult to determine.
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3. Gain-loss asymmetry : One observes large drawdowns in stock prices and stock
index values but not equally large upward movements.

4. Aggregational Gaussianity : As one increases the time scale At over which re-
turns are calculated, their distribution looks more and more like a normal dis-
tribution. In particular, the shape of the distribution is not the same at different
time scales.

5. Intermittency : Returns display, at any time scale, a high degree of variability.
This is quantified by the presence of irregular bursts in time series of a wide
variety of volatility estimators.

6. Volatility clustering : Different measures of volatility display a positive autocor-
relation over several days, which quantifies the fact that high-volatility events
tend to cluster in time.

7. Conditional heavy tails : Even after correcting returns for volatility clustering,
the residual time series still exhibit heavy tails. However, the tails are less heavy
than in the unconditional distribution of returns.

8. Slow decay of autocorrelation in absolute returns : The autocorrelation function
of absolute returns decays slowly as a function of the time lag, roughly as a
power law with an exponent ~ 0.2-0.4. This is sometimes interpreted as a sign
of long-range dependence.

9. Leverage effect : Most measures of volatility of an asset are negatively correlated
with the returns of that asset.

10. Volume-volatility correlation : Trading volume is correlated with all measures of
volatility.

11. Asymmetry in time scales : Coarse-grained measures of volatility predict fine-
scale volatility better than the other way round.

10.5.2 The Paretian Process Description

The introduction of Paretian processes by Mandelbrot [10.7, 10.18] demonstrated
convincingly that many features of the actual data (cotton prices in the USA) were
present in Paretian models. Nevertheless, one of the principal features he observed—
that the returns appeared to have infinite variance—does not seem to be present in
financial markets, since this contradicts Sect. 10.5.1 No. 2.

10.5.3 Implications for Realistic Models

The main features of the facts listed above can be modelled by a simple description
of the same form as (10.1.1), but with a different kind of driving noise.

a) Doléans-Dade Exponential: The most obvious thing to do is to write a stochastic
differential equation of the kind

ds(t) = p(H)S () dt + o ()S () dX(z), (10.5.1)
in which

i) The noise term X(r) is a Lévy process
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ii) The drift u(z) and the volatility o (¢) are determined empirically, and the volatility
may itself be stochastic quantity.

However, the solution of this kind of equation is not quite as simple as in the Gaussian
case. In the case of constant x4 and o, the solution is given by the Doléans-Dade
exponential (also known as the stochastic exponential)

S =S exput+oX@®)[1(1 + oAX(s))e”TAXG) (10.5.2)

Here AX(s) denotes the jump at time s, if there is one, so that the product is over the
discrete set of points s at which there are jumps.

The simple stochastic differential equation (10.5.1) thus has a rather complicated
solution, and one which has the unacceptable property of being possibly negative,
since negative jumps such that cAX(s) < —1 cannot be excluded.

b) Exponential Lévy Process: The more acceptable generalisation of the geometric
Brownian motion description is to match the solutions; thus one can choose

t t
S() = SO)exp {f,u(s) ds+ [o(s) dX(s)} i, (10.5.3)
0 0
and this corresponds to the rather complex stochastic differential equation

ds(t) = ut)S (1) dt + (S (t) dX(t) + S () (e‘rmAxm 1 - o()AX( t)) 1054)

The definition of the stochastic integrals is most easily understood as being via a
Riemann-Stieltjes integral of each sample path.

The second description is known as an exponential Lévy process. The description
is clearly different from that based on a stochastic exponential, since the exponential
Lévy process is always positive, unlike the stochastic exponential. However, it can be
shown [10.11] that every exponential Lévy process can also be written as a stochastic
exponential, based on another Lévy process—the converse does not of course hold.
We shall therefore concentrate on the exponential Lévy process descriptions.

10.5.4 Equivalent Martingale Measure

The Black-Scholes argument on options pricing does not work for the kinds of
stochastic differential equation such as (10.5.1, 10.5.4), but the risk-neutral formu-
lation given in Sect. 10.2.7 can be generalised in an acceptable, but possibly non-
unique way. Let us take the exponential Lévy process equation (10.5.3), and ask if
there is a way of producing a process related to it in the same way as the process
(10.2.34) is related to the process (10.2.29). In finance terminology this is viewed
as a change of probability measure for the driving process X(r) of the representation
(10.5.3), that is the same paths are weighted according to the risk-neutral judgment
of the investor, rather than the more objective, but individualised judgement of an
unbiased observer,

In writing a stochastic differential equation such as (10.5.1) it is implicitly under-

stood that the stochastic increment dX(t) has zero mean and is independent of S (¢),
so that we can write
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(dS (@) = u(eXS@))de, (10.5.5)
and p(t) does correspond to the average growth rate. However, if th) isa gene{'al
Lévy process, this will not necessarily be true. The copcept f’f an equivalent Martin-
gale measure is to adjust the measure on the underlying Le.:vy process X(t) so as to
achieve the desired average growth rate, which in ﬁnanc'e is the.mtf.arest'rate r. Put
precisely, this means that we will assume that the stocl.( price S (¢) is given m.the f({rm
of an exponential Lévy process which can be written in terms of an underlying Lévy

process Z(t) as
S() =S80)exp(Z@)). (10.5.6)

where Z(¢) can be written in the form like the exponent in (10.5.3). We want to choose
and equivalent measure 2 such that

€e'St)ae = S0). (10.5.7)

Thus, e~"S (¢) is a martingale under the measure 2, and the measure 2 is called the
equivalent martingale measure. ' '

One straightforward way of achieving the equivalent martmgale.mf:asure is by the
use of the Esscher transform, which we shall describe below. This is by no means
the only way, and for a range of methods the reader is referred to [10.11]. .
a) Moment Generating Function: It is convenient to use the moment generating
function for the Lévy process S (¢), which can be defined in terms of the characteristic

function ¢(u, t) by

W(p,1) = (SO = ("%”) = ¢(-ip.1). (10.5.8)
then the moments of S (¢) are given by

(S@®" = SO)(exp(nZ@))) , (10.5.9)

= ¥(n,t). (10.5.10)

Since Z(z) is a Lévy process, we can use (10.3.24) to write the moment generating
function in the form

?(p,t) = exp(g(p)1), (10.5.11)
where
gp)=dp+Liap®+ T du (€™ =1 — puy(lul < 1)) w(x). (10.5.12)

—00

b) Options Pricing: A method which reproduces the results of Sect. 10.2.7 using
the concept of the Esscher transform proceeds as follows.

i) Suppose the probability density of Z(¢) is f(z, t); define a new density by

“fan e (105.13)
Lo fy,dy  ¥(6,1)
Here 6 is a quantity to be determined, and f(z,t; 6) is the Esscher trfzr1sfonn qf
f(z,1). The new density is still the density of a Lévy process, provided that it

f(z,1,0) =
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is normalisable. This excludes all Paretian processes, but for any density which
decays faster than an exponential as |z] — oo there will be a range of values of
6 for which f(z,;6) is normalisable. This includes the hyperbolic process, and
the tempered Paretian processes, obtained by multiplying the Paretian density by
exp(—e¢lz]) for some positive €.

ii) Now choose 6 so that

5(0) = e™(S ()., (10.5.14)
= S(0)e™"(e?"),, (10.5.15)
= (e(l+9)Z(I))
= 5(0)e —W(—GT : (10.5.16)
L PA+6,1)
— rt
= S(0)e ey (10.5.17)
= S©O)exp{t[g(1 +6) - g(6) - ). (10.5.18)
The solution for € is obtained by requiring
r=g(l+6)-g@). (10.5.19)

iii) This then defines a new stochastic process; for example, for the stock growth
process defined by (10.2.29), we find that

¥y —
-k, (10.5.20)

and the transformed process is described by the risk-neutral version (10.2.34).

10.5.5 Hyperbolic Models

This kind of formulation was first introduced by Eberlein, Keller and Prause [10.19].
They showed that the choice of an underlying Lévy process Z(t) given by the hyper-
bolic density (10.4.27), yielded a good fit to a large quantity of data on financial
markets.

10.5.6 Choice of Models

An accessible and comprehensive treatment of the application of jump-processes to
finance can be found in the book by Cont and Tankov [10.11], who give a thorough
review of almost every model which has been tried. Unlike the situation in physics
or chemistry, there is no real theoretical foundation upon which to build; rather, one
attempts to fit the observed facts in as simple and reliable way as possible in order to
exploit the predictive power of the model so determined.

. A relatively recent piece of work by Bamdorff-Nielsen and Shephard [10.15]
introduces a number of rather complex but realistic models based on generalised
Ornstein-Uhlenbeck processes. These obey the standard Ornstein-Uhlenbeck sto-
chastic differential equation, with the Wiener process increment d W(t) replaced by
the increment of an appropriate Lévy process. This paper is most notable because
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of the extensive discussion section attached, in which about 40 experts in the field
comment (often in great detail) on the paper, and the authors respond. The com-
ments which give a vivid picture of the state of the field, range from uncritical praise
to Mandelbrot’s downright condemnation, which receives a tactful but pointed re-
sponse from the authors.

Mathematical finance will always be controversial, since there is no reason to be-
lieve that there is any “correct” mathematical description of financial markets.

10.6 Epilogue—the Crash of 2008

As this book goes to press, the world is experiencing a global collapse of finan-
cial markets, which many blame on the creation and uncritical trading in deriva-
tives, some of them of a far more exotic nature than those described in this chapter.
The confidence engendered by the mathematical description of financial markets has
been seen to be ill-founded, and many of Samuelson’s “high-paid consultants to Wall
Street” (Sect. 1.3.3) have found themselves jobless. The connection of the theory of
financial markets with reality has naturally come to be questioned. While some may
take that point of view, others would point out that a massive set of changes is to be
expected occasionally in any system governed by probability laws with heavy tails,
as is undoubtedly the case in all the more careful and accurate models.

Even though the disastrous events of October 2008 came unforseen by financial
experts, this does not mean the insights given by mathematical finance are specious,
but rather, that they are still incomplete. The future of mathematical finance will
depend on its ability to adapt to the new financial world order which may be about
to happen, and to what extent it can actually assist in developing a financial system
with greater stability.



